
EECS 270 Lecture notes 7: Faster adders Page 1 of 6

Plan for the rest of the term.
• Today: Faster Adders (CLA)

• Friday: Bus-based datapath

• Monday (June 12th): Mealy machines

• Wednesday: Errors, maybe some Verilog/embedded stuff.

• Friday: Catchup, FPGAs

• Monday (June 19th): Class review and practice problems.

• Thursday (June 22nd) Final exam 4-6pm

EECS 270 Lecture notes 7: Faster adders Page 2 of 6

Faster adders (3.4)
Ripple-carry adders are slow.

• How many gate delays do we have for a 4-bit ripple-carry adder (in the worst case)?

• For a 32-bit RCA?

They are however pretty small.

• How many gates total for a 32-bit RCA?

One other option is that we could “just” write out the truth table for the adder (9 inputs for a 4-bit
adder) and write the sum-of-products for the 4-bit adder.

• What would be our gate delay?

• How many gates would there be (this one is hard and we can’t really figure it out easily, but
guess).

Pretty clearly 32-bit adders done as sum-of-products would be huge (we’ll discuss how huge later). And
if we were limited to 2-input gates, things get crazy quickly.

Graph of number of
transistors needed for a
2-level (sum-of-products
in this case) N-bit adder.
From our textbook’s
author (Figure 4.24)

F A

a3

c o s3

b3

F A

a0 b0 ci

F A

a2

s2 s1 s0

b2

F A

a1 b1

a

EECS 270 Lecture notes 7: Faster adders Page 3 of 6

Start on lookahead

What we would like is a compromise. Ripple-carry is slow (linear in N). Sum-of-products is huge
(probably exponential in N—think about the size of the truth table). We want something in between.
Let’s consider one option:

There is no rippling of the carry—we could “just” compute the “lookahead” without looking at previous

stages. We just add some logic that figures out if there will be a carry in. That lookahead box, in theory

could be 2-level logic. But as you can see, computing “c3” involves looking at c0, a0, b0, a1, b1, a2, and

b2. Which sounds like our sum-of-products adder. And doing a 32-bit one seems crazy and about as big

as our sum-of-products adder.

EECS 270 Lecture notes 7: Faster adders Page 4 of 6

EECS 270 Lecture notes 7: Faster adders Page 5 of 6

EECS 270 Lecture notes 7: Faster adders Page 6 of 6

Making larger adders seems hard. The amount of work for each carry bit keeps growing. We could just
limit ourselves to a 4-bit adder like this and then ripple the 4-bit adders (as shown below). That might
be an interesting compromise between size and speed.

But we’d like to do better than that. This marginally might speed up things (at the cost of more logic)
but it’s only a marginal improvement.

Carry-lookahead (again)

Or we could try to get tricky. Obviously (?), we could use the lookahead logic again.

Adder type (16-bit) CLA

Gate count

Gate delays

Adder type (16-bit) CLA
Gate-input count

Log2(gate-input) delays

a3 a2 a1 a0 b3

s3 s2 s1 s0 c out

c out

cin

b2 b1 b0

4-bit adder

a3 a2 a1 a0 b3

s3 s2 s1 s0

s11-s8 s15-s12

a15-a12 b15-b12 a11-a8 b11-b8

c out

cin

b2 b1 b0

4-bit adder

a3 a2 a1 a0 b3

s3 s2 s1 s0 c out

s7 s6 s5 s4

cin

b2 b1 b0

a7 a6 a5 a4 b7 b6 b5 b4

4-bit adder

a3 a2 a1 a0 b3

s3 s2 s1 s0

s3 s2 s1 s0

c out

cin

b2 b1 b0

a3 a2 a1 a0 b3 b2 b1 b0

4-bit adder

