Plan for the rest of the term.
e Today: Faster Adders (CLA)
e Friday: Bus-based datapath
e Monday (June 12%): Mealy machines
e Wednesday: Errors, maybe some Verilog/embedded stuff.
e Friday: Catchup, FPGAs
e Monday (June 19™): Class review and practice problems.
e Thursday (June 22" Final exam 4-6pm

Faster adders (3.4)

Ripple-carry adders are slow.
e How many gate delays do we have for a 4-bit ripple-carry adder (in the worst case)?

e Fora32-bit RCA?
They are however pretty small.

e How many gates total for a 32-bit RCA?

2b2

—))

= 4

/4
(4] s3 S2 sl sO

One other option is that we could “just” write out the truth table for the adder (9 inputs for a 4-bit
adder) and write the sum-of-products for the 4-bit adder.
e What would be our gate delay?

e How many gates would there be (this one is hard and we can’t really figure it out easily, but
guess).

Pretty clearly 32-bit adders done as sum-of-products would be huge (we’ll discuss how huge later). And
if we were limited to 2-input gates, things get crazy quickly.

I l l | I | I Graph of number of 10000
transistors needed for a
2-level (sum-of-products 8000
Two-level: AND level in this case) N-bit adder. E
Jollowed by ORs From our textbook’s B 6000
. L
author (Figure 4.24) S 4000
| =
co s3 s2 s1 sO 2000

Start on lookahead

What we would like is a compromise. Ripple-carry is slow (linear in N). Sum-of-products is huge

(probably exponential in N—think about the size of the truth table). We want something in between.
Let’s consider one option:

a3 b3 a2 b2 al b1 a0 b0 c0
¢l
& 4
¥
& = #‘
I ?f ?Y b d

1 2] 1
look look look
ahead ahead ahead

[c3 o 12 L 1 5w [c0

.
[FA |
c4 stage 3 stage 2 stage 1 stage 0

cout s3 lsO

0

N
w
b

There is no rippling of the carry—we could “just” compute the “lookahead” without looking at previous
stages. We just add some logic that figures out if there will be a carry in. That lookahead box, in theory
could be 2-level logic. But as you can see, computing “c3” involves looking at c0, a0, b0, a1, b1, a2, and

b2. Which sounds like our sum-of-products adder. And doing a 32-bit one seems crazy and about as big
as our sum-of-products adder.

EECS 270 Lecture notes 7: Faster adders Page 4 of 6

Faster Adder — (Bad) Attempt at “Lookahead”

* Want each stage’s carry-in bit to be function of external inputs only (a’s, b’s, or c0)

a3h3 c2 31b1 cl__ 3000 40
/A\ i 2N [I
)
v | 7 -
\ N % K
! s .
© s3 Ho= s2 s1 s0
+ Recall full-adder equations:
— s=axorb Stage 0: Carry-in is already an
— c=bc+ac+ab external input: c0
a3 a2 amm a0b0co Stage 1: C1=000
« ™\\co0= b0cO + a0c0 + a0b0
ook ook 1=Db0c0 + a0c0 + a0b0
S LI — o Stage 2: c2=c
= co1 =b1c1 +alct1 +aib1
s e =22 = b1cf + alcl + albi

c2 = b1(b0c0 + alc0O + a0b0) + a1(b0cO + alcO + a0Ob0) +a1b1
c2 =b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1a0c0 + a1a0b0 + a1b1

a3b3 a2 aib1 alb0c0
« Carry lookahead logic
function of external inputs I

— No waiting for ripple —
* Problem ahead

— Equations get too big c3 [co

— Not efficient L/ U

— Need a better form of /1= =208 2P

lookahead

¢1 =b0c0 + alc0 + aOb0

c2 =b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1alc0 + a1a0b0 + a1b1

¢3 =b2b1b0c0 + b2b1a0c0 + b2b1a0b0 + b2a1b0c0 + b2a1a0c0 + b2a1a0b0 + b2a1b1 +
a2b1b0c0 + a2b1a0c0 + a2b1a0b0 + a2a1b0c0 + a2a1a0c0 + a2a1alb0 + a2a1b1 + a2b2

EECS 270 Lecture notes 7: Faster adders Page 5 of 6

+ Have each stage compute two terms
— Propagate: P = a xor b
— Generate: G = ab
« Compute lookahead from P and G terms, not from external inputs

- Why P & G? Because the logic comes out much simpler
« Very clever finding; not particularly obvious though
* Why those names?

— G:Ifaand b are 1, carry-out will be 1 — “generate” a carry-out of 1 in this case

— P:Ifonly one of aor bis 1, then carry-out will equal the carry-in — propagate the
carry-in to the carry-out in this case

c0
carries: o4 c3 2 T‘T 1 1@ 1Hb0
B: b3 b2 b1/ b0 1 0 a0
A: + a3 a2 ail a0 +
oout s3 s2 si sO 1 \(y \9/

if a0b0 = 1 if aOxor b0 = 1
thenc1 =1 thenc1 =1ifc0=1
(call this G:Generate) (call this P: Propagate)

a3 b3 a2 b2 al b1 a0 b0 cin

1 TR T T

i _ G3 P3 c1) G0 PO c0
! Carry-lookahead Io

cout s3 s2 (b) s1 s0
+ With P & G, the carry lookahead A" plugging in:
equations are much simpler c1 =G0 + POcO
— Equations before plugging in c2 =G1+P1c1=G1 + P1(G0 + P0c0)
« ¢1=G0 + P0c0 c2=G1+P1G0 + P1P0c0
« c2=G1+P1ct c3 = G2 + P2c2 = G2 + P2(G1 + P1G0 + P1P0c0
e c3=G0G2+P2c2 c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0
» cout=G3 + P3c3 cout = G3 + P3G2 + P3P2G1 + P3P2P1G0 +
P3P2P1P0c0

Much simpler than the “bad” lookahead A4

Making larger adders seems hard. The amount of work for each carry bit keeps growing. We could just
limit ourselves to a 4-bit adder like this and then ripple the 4-bit adders (as shown below). That might
be an interesting compromise between size and speed.

al5-al2 b15-b12
LTI Tl

all-a3 bl11-b8
NN

a7a6a5a4 b7b6b5b4
NN RN

a3a2ala0 b3bzb1b0
N R

a3a2ala0 b3b2b1b0
4-bit adder cin

cout s3s2s1s0

a3a2ala0 b3b2b1b0
4-bit adder cin

cout s3s2s1s0

a3a2ala0 b3b2b1b0
4-bit adder cin

cout s3s2s1s0

a3a2ala0 b3b2b1b0
4-bit adder cin

cout s3s2s1s0

[1111
cout s15-s12

11
s11-s8

111
s7s6s5s4

NN
s3s2s1s0

But we'd like to do better than that. This marginally might speed up things (at the cost of more logic)
but it’s only a marginal improvement.

Carry-lookahead (again)
Or we could try to get tricky. Obviously (?), we could use the lookahead logic again.

These use carry-lookahead internally

all -| | /‘4 -‘b8I \17&;6&;5?1 7b6b5bi4 eiBei2ei1 eiO b|3b|2b|1 b|0

LT T
a3a2alal b3b2b11}0/ a3azala0 l/b3b2b1b0 a3¥a@a1a0 b3b2b1bb‘\\§’3a2a1a0 b3b2b1b0
4-bit adder cin 4-bit adder cin 4-bit adder cin% 4-bit adder cin
P G cout s3s2s1s0 P G cout s3s2s1s0 P G cout s3s2s1s0 P G cout s3s2s1s0
1§ i L 14y I
P3G3 c3P2G2 c2P1G1 c1P0OGO
P G cout 4-bit carry-loo[(ahead logic
*+ * $15-s12 s11-s18 s7-s4 s3-s0
Second level of carry-lookahead
Adder type (16-bit) | CLA Adder type (16-bit) CLA

Gate count

Gate-input count

Gate delays

Log.(gate-input) delays

